

Organisation spatiale et temporelle à l'échelle mésoscopique d'une protéine de signalisation cellulaire

Mathieu COPPEY UMR168 Physics and chemistry departments Curie Institute PARIS

(CMLS)

Cell at the mesoscopic scale

The meso scale for eukariotic cells

The meso scale for eukariotic cells

What is found at the meso scale?

Macromolecular complexes, supramolecular assemblies of ~10-100 molecules

100nm

100nm David Goodshell

Why the meso scale is a challenge?

MD simulation of the Ecoli cytoplasm (100nm, 1µs) McGuffee, and Elcock 2010

Why the meso scale is a challenge?

MD simulation of the Ecoli cytoplasm (100nm, 1µs) McGuffee, and Elcock 2010

Dividing mammalian cell (100µm, 1hrs) www.nanolive.ch

Why the meso scale is a challenge?

Fluorescent microscopy to follow biomolecules

Diffraction limit

Protein 10nm

Fluorescent spot 200nm

Signaling in cells

Signal transduction

Signaling pathways

Signaling network controlling actin cytoskeleton dynamics

Signaling in space and time

Functional MRI Spontaneous brain activity J. Vincent

nm-µm s-min

> FRET Biosensor of Rac1 activity Spontaneous intracellular activity K. Hahn

Collective protein dynamics

Rac1 nanoclusters

Remorino A. et al, Cell Report, 2018

Rac1 signaling protein

RhoGTPase switch and shuttling activity cycle

Rac1 signaling protein

K. Hahn, 2009

How signal is regulated at the meso scale?

Diffraction limit

Pointillist super-resolution

Single molecule imaging of Rac1

PALM image of Rac1 distribution

70 nm nanoclusters
~50 molecules
Localized in active regions

Functional role of nanoclusters?

Roob et al, 2019

A new physics for the meso scale?

Membraneless organelles

Biological meso-objects

Weak and multivalent interactions

Two key physical concepts for meso-assemblies

> Avidity

> Liquid-liquid phase separation

kT is the measure of thermal energy

Hydrogen-bond ~10 kT Covalent bonds ~ 100–200 kT

Many bonds in biological systems are weak

"The reason for the weakness and short lifetimes of LR bonds is that nature does not actually want all of its bonds to be long-lived, just long enough for them to perform some function that requires a certain time—not less, but not more either."

« lock-and-key » interactions in biology

Table 21.2. Bond Energies and Lifetimes of LR Bonds¹

Binding Protein (Receptor, R)	Target (Ligand, L)	Affinity [<i>K</i> _D (M)]	Energy ² (kT)	Lifetimes of Bonds ³
Avidin	Biotin	10 ⁻¹⁵	35	months
Antibody	Antigen	10 ⁻⁷ -10 ⁻¹¹	16–25	seconds-hours
Receptor	Hormone	10 ⁻⁹	21	seconds
Enzyme	Substrate	10 ⁻³ -10 ⁻⁹	7–21	µs–seconds
Transport protein	Hormone	$10^{-6} - 10^{-8}$	14–18	<seconds< th=""></seconds<>
Lectins ⁴	Glycoconjugates	10 ⁻³ -10 ⁻⁵	7–12 ⁵	µs–ms ⁵

Intermolecular and Surface Forces Jacob N. Israelachvili

Multimers increase the lifetime of interaction ex: the two strands of DNA, Transcription factors, ...

Short polymer

Low avidity

"because individual binding events increase the likelihood of other interactions to occur (i.e. increase the local concentration of each binding partner in proximity to the binding site), avidity should not be thought of as the mere sum of its constituent affinities but as the combined effect of all affinities participating in the biomolecular interaction" Wikipedia

Example: switch like response of a biomolecule

A.1.1a

A.1.1b

A.5.5a

A.5.5b

Engineering synthetic signaling proteins with ultrasensitive input/ output control

SH3 OUTPUT

OUTPUT

OUTPUT

 $(Kd = 10 \mu M)$

STRONG (Kd = 0.1 μ M)

John E Dueber^{1,5,6}, Ethan A Mirsky^{2,5} & Wendell A Lim^{3–5}

SH3

SH3 SH3

SH3

SH3

WEAK

Phase separation

Multivalency + weak affinity

Phase separation

Multivalency + weak affinity

Liquid droplets Toettcher Cell 2017

LCD, IDR, Prion like domains

More than 40% of the proteome is made of disordered regions

The protein disorder continuum

Ongoing project: Ewing Sarcoma

Open questions

Chong S. et al, Biorxiv 2021

LOC²O: Light-based Observation and Control of Cell Organization

LOCCO Team

Mathieu Coppey Bassam Hajj Patrick Keller Tommaso Galgani Lorena Kolar-znika Maud Bongaerts Brieuc Chauvin Thomas Blanc Jean De Seze Koyomi Nakazawa Mirna Kramar Louise Regnier Anumita Jawahar

Past members: Kotryna Vaidziulyte Simon De Beco Leo Valon

FRANCE-BIOIMAGING

Clustering due to the charged protein tail

10

Nanoclusters immobilize Rac1

And are enriched by molecular interactions

